ООО "ФИННКОУТИНГС"
Официальный дистрибьютор
Звоните с 09:00 до 18:00
Главная \ Статьи \ Принципы и методы подготовки металлической поверхности под окраску.

Принципы и методы подготовки поверхности под окраску.

Принципы и методы подготовки металлической поверхности под окраску.
 
 
 
 
 
 
 
 
                        

Важнейшим показателем, определяющим срок службы покрытия и во многом зависящая от подготовки поверхности, является адгезия - явление, заключающееся в установлении связи между пленкой краски и подложкой, на которую она нанесена. При этом возникают различные по природе связи: химические с энергией от 50 до 1000 кДж/моль, водородные, электростатические, молекулярные (силы Ван-дер-Ваальса) с энергией до 50 кДж/моль, а также связи, вызванные механическим зацеплением краски в неровностях окрашиваемой поверхности.

 

Основными видами загрязнения металлов являются оксиды в виде:

  • прокатной окалины - смесь оксидных соединений железа: вюстита FeO, магнетита Fe3O4 и гематита F2O3. Окалина имеет более положительный электродный потенциал в водных растворах по сравнению с потенциалом железа, поэтому в воде, во влажной атмосфере, в растворах солей при наличии окалины наблюдается интенсивная коррозия стали на участках с разрушенной окалиной. Окалина довольно прочно сцеплена с металлом и ее удаление является наиболее трудоемкой частью очистных работ.
  • ржавчины − гидратированные оксиды железа; ее присутствие приводит к снижению адгезии покрытий и, кроме того, усиливает осмотическое проникновение воды под пленку краски вследствие наличия в ней растворимых продуктов.

Так же на подложке зачастую присутствуют и другие виды загрязнений:

  • при нанесении на металлические поверхности лакокрасочный материал практически всегда (даже после очистки) контактирует не с металлом, а с его кислородными или иными соединениями и адсорбированной водой. Адсорбированная вода всегда имеется также на поверхности и других материалов − бетона, пластмасс, резины, дерева. Кроме того, в связи со щелочностью, поверхность многих строительных материалов загрязнена карбонатами за счет диоксида углерода воздуха.
  • в виде жиров, консервационных масел и смазок, остатков полировочных паст, охлаждающих эмульсий и т.п. ухудшает условия смачивания поверхности лакокрасочными материалами и, следовательно, ослабляют взаимодействие краски с подложкой.
  • пыль от разрушения частиц абразива, соли из морской воды или атмосферы, остатки прежней краски и т.п. Они должны удаляться с поверхности по возможности более тщательно, т.к. растворимая их часть вызывает осмотическое проникновение воды, а нерастворимые частицы ослабляют контакт краски с поверхностью.

 Все это отрицательно сказывается на адгезии и других защитных свойствах будущего покрытия.

Не малую важность так же имеет рельеф окрашиваемой поверхности - он связан с исходными дефектами поверхности и условиями обработки.

Дефекты поверхности, образующиеся при изготовлении деталей и конструкций: заусенцы, вмятины, острые кромки, сварочный град, остатки флюсов, неровности сварных швов и т.п. Дефекты поверхности приводят к разнотолщинности покрытий, возникновению анодных и катодных участков, непрокрашенных участков и, в конечном итоге, преждевременному разрушению покрытия и коррозии.

Оценка рельефа с точки зрения подготовки поверхности связанна главным образом с шероховатость поверхности. Шероховатость поверхности может влиять на свойства будущего покрытия как положительно, так и отрицательно. Оптимальная величина шероховатости определяется из следующих соображений: 

  • с одной стороны, чем больше шероховатость, тем больше истинная (активная) поверхность металла и, на первый взгляд, больше адгезионная прочность лакокрасочного покрытия. Например, соотношение между площадью  поверхности, определенной по ее геометрическим размерам, и истинной (с учетом шероховатости) составляет для полированной стали около 1,4, а для стали после абразивоструйной обработки может достигать 10.
  • с другой стороны, слишком большая шероховатость может привести к следующим недостаткам формируемого покрытия: снижение декоративных свойств покрытия из-за волнистости окрашенной поверхности, и отсюда,  повышенное грязеудержание; потери лакокрасочного материала вследствие заполнения глубоких впадин на шероховатой поверхности (при шероховатости около 150 мкм увеличение расхода краски достигает 0,1 л/кв.м); возможное появление пустот на дне глубоких впадин, т.е. участков неадгезированного покрытия, что ведет к снижению адгезионной прочности.
Принято считать, что для крупногабаритных металлоконструкций, на которые наносятся толстослойные (более 250 мкм) покрытия классом IV и выше по ГОСТ 9.032, оптимальная шероховатость RΖ может быть принята в диапазоне 40-90 мкм.
 

Взаимодействия подложки и ЛКМ с точки зрения характера окрашиваемого материала можно характеризовать двумя свойствами: сродством материала к воде (т.е. его гидрофильности или гидрофобности) и величиной поверхностной энергии.

Металлы по своей молекулярной структуре гидрофобны, однако присутствие оксидов и других сорбированных соединений может придать гидрофильность их поверхности. В зависимости от вида применяемого материала требуется соответствующая поверхность: под водные краски − гидрофильная, под краски на гидрофобных пленкообразователях − гидрофобная. Гидрофилизация поверхности достигается обезжириванием, нанесением конверсионных покрытий; гидрофобизация − обработкой различными поверхностно−активными веществами, аппретированием и т.п.

Поверхностная энергия твердых тел, служащих подложкой, во многом определяет такие важные свойства, как смачивание, растекание, адгезия и др. Как правило, жидкости тем лучше смачивают подложку, чем выше ее поверхностная энергия.

Поверхностная энергия, как и степень гидрофильности или гидрофобности, может быть существенно изменена путем модификации, например, оксидированием, фосфатированием, азотированием и другими методами.

 

Качественная подготовка поверхности под окраску состоит из следующих основных операций:

  • устранение дефектов поверхности;
  • удаление масляных и жировых загрязнений;
  • удаление продуктов коррозии;
  • удаление прочих загрязнений (хлоридов, пыли, остатков абразива и т.п.).

Работы по устранению дефектов поверхности (заусеницы, острые кромки, сварочные брызги и др.), как правило, выполняются в процессе изготовления конструкций до начала очистных работ.

Для удаления загрязнений и создания требуемой шероховатости поверхности применяют преимущественно механические и химические методы.

По возможности, следует производить подготовку поверхности, когда коррозия стали по стандарту ИСО 8501−1 оценивается степенью А или между А и В.

Перед проведением механической обработки поверхность необходимо очистить от масел, смазок, грязи и других загрязнителей:

  • Масляные и жировые загрязнения должны быть удалены растворителем или водными моющими растворами.
  • Меловые загрязнения, копоть от сварки и резки удаляются пресной водой, при необходимости используют пневмощетки.
  • При наличии на поверхности растворимых солей их следует удалить струей воды.

Способ подготовки поверхности, чистота поверхности, шероховатость и другие параметры очистки  не должны противоречить рекомендациям поставщика лакокрасочных материалов.

Если в процессе очистки не достигнута необходимая степень подготовки поверхности, то необходимо провести дополнительные работы, при этом могут быть использованы другие более подходящие для этого случая методы. В отдельных случаях сразу предусматривается использование различных методов подготовки поверхности (например, первоначально гидравлическая очистка от старой краски и продуктов коррозии, затем абразивоструйная очистка от налета ржавчины и для создания оптимального рельефа).

При подготовке ранее окрашенных поверхностей не всегда нужно полностью удалять предыдущие покрытия. В тех случаях, когда допускается локальное удаление прежнего покрытия должны соблюдаться следующие условия:

  • оставшееся покрытие должно быть совместимо с новым покрытием и не снижать его защитные свойства;
  • во время локальной очистки не должны быть повреждены соседние участки;
  • это должно быть экономически целесообразно.

Наиболее распространенные виды очистки поверхности под окраску:

  • Абразивоструйная очистка - абразивные частицы в виде песка или других специализированных материалов ускоряются из абразивоструйного аппарата при помощи энергии сжатого воздуха. Является наиболее эффективным и производительным видом механической очистки. 
  • Гидроабразивная очистка - Абразив вводится в поток жидкости (обычно чистой воды) и струя направляется через сопло на обрабатываемую поверхность. Жидкость подается под более высоким давлением и количество абразива обычно меньше, чем при очистке сжатым воздухом. В воду может добавляться ингибитор коррозии, совместимый с последующим покрытием. С помощью данного метода может достигаться степень подготовки Sa3 при любой степени коррозии исходной поверхности или ранее окрашенной поверхности. Такая очистка позволяет одновременно удалять практически полностью все водорастворимые загрязнения.
  • Дробеметная очистка - отличается от абразивоструйной тем, что поток дроби создается не сжатым воздухом, а в результате центробежной силы от вращающего с большой скоростью (2500−3000 об/мин) ротора с лопатками, выбрасывающими веерообразным потоком абразив на очищаемую поверхность. Такой способ подготовки поверхности в 5−10 раз производительнее абразивоструйного и значительно дешевле. Он используется в условиях непрерывной обработки деталей с доступными поверхностями, например, листового и профильного проката в поточных линиях. В большинстве случаев установки дробеметной очистки − это стационарные сооружения с закрытыми камерами и циркуляцией абразива в замкнутой системе.
  • Гидроочистка - заключается в обработке поверхности струей воды, подавляемой под высоким или сверхвысоким (порядка 300 МПа) давлением насосом через сопло. Требуемое давление зависит от типа и количества загрязнений. Обычно метод гидроочистки используют для удаления водорастворимых загрязнений (солей, растворимых отложений), рыхлой ржавчины, разрушенных или с низкой адгезией лакокрасочных покрытий, морских обрастателей, водорослей и т.п. Для удаления масел и жировых загрязнений в воду добавляют поверхностно-активные вещества, которые затем удаляют струей чистой воды.
  • Очистка ручным и механизированным инструментом - обеспечивает худшую чистоту и рельеф поверхности по сравнению с абразивоструйной очисткой. К тому не редко она оказывается и более трудоемкой и дорогостоящей. Поэтому этот метод следует использовать в тех случаях, когда указанные выше методы высококачественной подготовка поверхности по каким-либо соображениям неприемлемы.
  • Травление - очистка поверхности сводится к растворению оксидов (окалины, ржавчины) и поверхностного слоя металла, восстановлению оксидных соединений и их отрыву выделяющимся водородом. Травлению подвергают изделия, предварительно очищенные от механических и жировых загрязнений. В качестве травильных растворов для черных металлов наиболее широко используют серную, соляную и ортофосфорную кислоты с различными добавками. Кислотное травление проводят в ваннах или в струйных камерах; продолжительность процесса обычно составляет в первом случае около 30 мин, во втором − около 5 мин. После травления изделия промывают последовательно горячей и холодной водой, а затем нейтрализуют остаточную кислоту слабокислыми или слабощелочными растворами.

                      

 

Появились вопросы?
Просто позвоните и мы ответим на возникшие вопросы

+7-812-244-94-90

Наша компания гарантирует высокий уровень обслуживания

На складе компании установлено колеровочное оборудование, что позволяет получить желаемый цвет продукта в кратчайшие сроки от одного тарного места.

Наши контакты
Телефон: